(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).(1)求函数h(x)的定义域;(2)判断h(x)的奇偶性,并说明理由;(3)若f(3)=2,求使h(x)>0成立的x的集合.
(本小题满分12分) 如图,已知三棱柱ABC-A1B1C1 (I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1 (II)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC。
(本小题满分12分) 某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图. (I )估计全市学生综合素质成绩的平均值; (II)若综合素质成绩排名前5名中,其中1人为某校的学生会主席,从这5人中推荐3人参加自主招生考试,试求这3人中含该学生会主席的概率。
(本小题满分12分) 已知函数 (I)求函数f(x)的最小正周期; (II)求函数f(x)的最小值.及f(x)取最小值时x的集合。
(本小题满分15分)已知函数, (I)若时,函数在其定义域内是增函数,求b的取值范围; (II)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
已知函数. (1)求函数的图像在点处的切线方程; (2)若,且对任意恒成立,求的最大值;