某特技飞行队在名胜风景旅游区——张家界天门洞特技表演, 其中一架飞机起飞后的高度变化如下表:(本题7分)(1)此时这架飞机比起飞点高了多少千米?(2)如果飞机每上升或下降1 km需消耗2L燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3)如果飞机做特技表演时,有4个规定动作,前3个动作起飞后高度变化如下:上升3.8km,下降2.9km,再上升1.6km,若要使飞机最终比起飞点高出1km,问第4个动作是上升还是下降,上升或下降多少千米?
如图,在平面直角坐标系xOy中,抛物线交y轴于点C,对称轴与x轴交于点D,顶点为M,设点P(x,y)是第一象限内该抛物线上的一个动点,直线PE绕点P旋转,与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出点E的坐标;若不存在,请说明理由。
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点. (1)求AD的长及抛物线的解析式; (2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
如图,已知抛物线经过点A,B及原点O,顶点为C,直线OB为,点P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒. (1)点F在边BC上. ①如图1,连接DE,AF,若DE⊥AF,求t的值; ②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似? (2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系xOy中,点P(x,y)是抛物线上的一个动点,抛物线的对称轴与x轴交于点D,经过点P的直线PE与y轴交于点E,是否存在△OPE与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由。