(本小题满分12分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点.①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.
设函数的临界点是0和4.(1)求常数k的值;(2)确定函数的单调区间和极值.
已知函数(为自然对数的底)。(Ⅰ)求函数的单调递增区间;(Ⅱ)求曲线在点处的切线方程。
已知函数f(x)=x3-3x2-9x+1(1)求函数在区间[-4,4]上的单调性.(2)求函数在区间[-4,4]上的极大值和极小值与最大值和最小值.
在三棱柱中,已知,在在底面的投影是线段的中点。(1)求点C到平面的距离;(2)求二面角的余弦值;(3)若M,N分别为直线上动点,求MN的最小值。
如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2. 图1 图2(1)求证:A1C⊥平面BCDE;(2)过点E作截面平面,分别交CB于F,于H,求截面的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成的角?说明理由.