(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
(本小题满分13分)已知椭圆()的离心率为,且短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,,求直线的方程.
已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在()上存在一点,使得成立,求的取值范围.
(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排列组成.
设随机变量ξ表示密码中不同数字的个数.(Ⅰ)求P(ξ=2);(Ⅱ)求随机变量ξ的分布列和数学期望.
(本小题满分12分)如图多面体中,平面平面,平面平面,,,,,且,,. (Ⅰ)在BC上取一点D,当 为何值时,平面平面; (Ⅱ)求二面角 的余弦值.
(本小题满分12分)已知向量:,,函数.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)求的对称轴并作出在的图象.