(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
(本题满分12分,第(1)小题5分,第(2)小题7分) 已知锐角△ABC中,三个内角为A、B、C,向量=2-2,+,=-,1+,∥. (1)求∠A的大小; (2)求函数=2+取得最大值时,∠B的大小.
已知椭圆的中心在原点,焦点在x轴上,离心率为,过点与椭圆交于两点. (1)若直线的斜率为1,且,求椭圆的标准方程; (2)若(1)中椭圆的右顶点为,直线的倾斜角为,问为何值时,取得最大值,并求出这个最大值.
设函数 (1)若, ①求的值; ②在; (2)当上是单调函数,求的取值范围。 (参考数据
已知点,直线相交于点,且它们的斜率之积为, (1)求动点的轨迹的方程; (2)若过点的直线与曲线交于两点,且,求直线的方程.
已知双曲线的中心在原点,焦点在坐标轴上,离心率,且双曲线过点,求双曲线的方程.