(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
已知函数f(x)的定义域为[-,],求函数g(x)=f(3x)+f()的定义域
若函数y= f(2x+1)的定义域为[ 1,2 ],求f (x)的定义域
某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照 试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下: 品种A:357,359,367,368,375,388,392,399,400,405,414, 415,421,423,423,427,430,430,434,443,445,451,454 品种B:363,371,374,383,385,386,391,392,394,395,397 397,400,401,401,403,406,407,410,412,415,416,422,430 (Ⅰ)完成所附的茎叶图 (Ⅱ)用茎叶图处理现有的数据,有什么优点? (Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。
定义在D上的函数y=,集合. 判断函数g(x)=2x与h(x)=lgx是否属于M,并证明你的结论.
己知,当点在函数的图象上时,点在函数的图象上。 (1)写出的解析式; (2)求方程的根