(本小题共12分)如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
(本小题共14分)在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点. (1)求证:平面⊥平面; (2)求直线与平面所成的角的正弦值.
(本小题满分12分) 如图,平行四边形中,,将沿折起到的位置,使平面平面 (1)求证:; (2)求三棱锥的侧面积.
(本小题满分12分) 如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF∥平面ABC; (2)平面平面.
(本小题满分14分) 如图已知△OPQ的面积为S,且. (Ⅰ)若的取值范围;
(Ⅱ)设为中心,P为焦点的椭圆经过点Q,当m≥2时,求的最小值,并求出此时的椭圆方程。
(本题满分14分) 在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段与轴的交点, . (Ⅰ)求动点的轨迹的方程; (Ⅱ)记的轨迹的方程为,过点作两条互相垂直的曲线的弦、,设、的中点分别为.求证:直线必过定点.