已知△ABC的内角满足,若,且满足:,,为的夹角.求。
如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为,的周长为. (1)求椭圆的方程; (2)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则天后的存留量;若在天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量随时间变化的曲线恰为直线的一部分,其斜率为存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”. (1)若,求“二次最佳时机点”; (2)若出现了“二次复习最佳时机点”,求的取值范围.
如图,在直三棱柱中,,分别是的中点,且. (Ⅰ)求证:; (Ⅱ)求证:平面平面.
)已知向量=(,1),=(,),f(x)=. (1)若,求的值; (2)在△ABC中,角A,B,C的对边分别是a,b,c且满足,求函数的取值范围.
已知函数f(x)=(m,n∈R)在x=1处取到极值2. (1)求f(x)的解析式; (2)设函数g(x)=ax-lnx.若对任意的x1∈[,2],总存在唯一的x2∈[,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.