某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
(本小题满分12分)在中,角A、B、C的对边分别为a、b、c,且,,边上的中线的长为. (Ⅰ) 求角和角的大小; (Ⅱ) 求的面积。
已知点,. (Ⅰ)若, 求的值; (Ⅱ)设为坐标原点, 点C在第一象限, 求函数的单调递增区间与值域.
(本小题满分14分) 已知函数的图象过坐标原点O, 且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值
(本小题满分12分) 某单位建造一间地面面积为12 平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米 ,房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,如果墙高为3米,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域;(2)当侧面的长度为多少时,总造价最低?最低造价是多少?
(本小题满分12分) 如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面;平面平面; (3)求三棱锥的体积.