如图,AP∥BC,PAB的平分线与CBA的平分线相交于E,CE的延长线交AP于D,求证:(1)AB=AD+BC(2)若BE=3,AE=4,求四边形ABCD的面积?
如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=4∠COE,求∠AOD的度数.
请在右图中,建立一个平面直角坐标系,使、的坐标分别为(0,1)和(5,), (1)写出点的坐标; (2)求三角形ABC的面积.
如图∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC. 证明:∵CF⊥AB,DE⊥AB(已知) ∴∠BED=90°,∠BFC=90°() ∴∠BED=∠BFC () ∴ED∥FC() ∴∠1=∠BCF() ∵∠2=∠1(已知 ) ∴∠2=∠BCF() ∴FG∥BC()
已知钝角∠AOB,点D在射线OB上. (1)作直线DE⊥OB; (2)作直线DF⊥OA,垂足为F.
判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例. (1)如果两个角不等,那么这两个角一定不是对顶角; (2)两个锐角的和一定是钝角;