如图,是圆的直径,点在圆上,,交于点,平面,,.(Ⅰ)证明:;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
某商场欲经销某种商品,考虑到不同顾客的喜好,决定同时销售、两个品牌,根据生产厂家营销策略,结合本地区以往经销该商品的大数据统计分析,品牌的销售利润与投入资金成正比,其关系如图1所示,品牌的销售利润与投入资金的算术平方根成正比,其关系如图2所示(利润与资金的单位:万元). (1)分别将、两个品牌的销售利润、表示为投入资金的函数关系式; (2)该商场计划投入5万元经销该种商品,并全部投入、两个品牌,问:怎样分配这5万元资金,才能使经销该种商品获得最大利润,其最大利润为多少万元?
已知为复数,为实数,且为纯虚数,其中i是虚数单位. (1)求复数; (2)若复数满足,求的最小值.
已知命题,. (1)若,求的值; (2)若,求的取值范围.
已知函数. (1)若直线过点,并且与曲线相切,求直线的方程; (2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)
已知椭圆的长轴长为4,且点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)过椭圆右焦点斜率为的直线交椭圆于两点,若,求直线的方程