在今年伦敦奥运会期间,来自美国和英国的共计6名志愿者被随机地平均分配到跳水、篮球、体操这三个岗位服务,且跳水岗位至少有一名美国志愿者的概率是.(Ⅰ)求6名志愿者中来自美国、英国的各几人;(Ⅱ)求篮球岗位恰好美国人、英国人各一人的概率.(Ⅲ)设随机变量为在体操岗位服务的美国志愿者的个数,求的分布列及期望
已知函数在(0,1)上单调递减.(1)求a的取值范围;(2)令,求在[1,2]上的最小值.
设等差数列{}的前n项和为S,且S3=2S2+4,a5=36.(1)求,Sn;(2)设,,求Tn
如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:(1)EF//平面MNCB;(2)平面MAC平面BND.
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
已知函数.(1)求的最小正周期及对称轴方程;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若,bc=6,求a的最小值.