已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB. (1)求B; (2)若b=2,△ABC的面积为,求a,c.
已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N. (Ⅰ)求椭圆的方程; (Ⅱ)当△AMN得面积为时,求的值.
等比数列的各项均为正数,且 (1)求数列的通项公式; (2)设求数列的前n项和.
如图,在直三棱柱中,,分别是棱上的点(点不同于点),且为的中点. 求证:(1)平面平面; (2)直线平面.
设函数. (1)求f(x)的最小值,并求使f(x)取得最小值的x的集合; (2)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且,求角C的大小.