(本小题满分12分)已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH2=GE·GF.
(本题10分)已知,试求的值.
(本小题满分14分)已知椭圆:的焦距为4,其长轴长和短轴长之比为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设为椭圆的右焦点,为直线上纵坐标不为的任意一点,过作的垂线交椭圆于点,若平分线段(其中为坐标原点),求的值
(本小题满分12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点. (Ⅰ)求证: ; (Ⅱ)在棱上是否存在一点,使得四点共面?若存在,指出点的位置并证明;若不存在,请说明理由; (Ⅲ)求点到平面的距离.
(本小题满分12分)已知定义在上的偶函数满足:当时,. (1)求函数在上的解析式; (2)设,若对于任意,都有成立,求实数的取值范围.
(本小题满分12分)已知函数, (1)当时,求函数在上的值域; (2)若,求使函数的定义域为,值域为的的值;