现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为. (1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.
如图,小明在笔直的河岸上的点处,以正对岸明显的标志点为参照点,设计出两种测量河宽的方案,绘制了相应的示意图,并用测角仪、卷尺及标杆测得一些数据如下:
(1)请你选择一种方案,结合示意图,简述测量过程;
(2)按照你选定的方案,求河宽.(参考数据:,
如图,在中,,点为的中点,延长到点,使,交于点.
(1)求证:是的切线;
(2)若,求弦的长.
某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.
比赛成绩频数分布表
成绩分组(单位:分)
频数
频率
60
0.12
0.3
240
50
0.1
合计
1
请根据以上信息解答下列问题:
(1)频数分布表中, , ;
(2)补全频数分布直方图;
(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?
已知关于的一元二次方程.
(1)求证:对于任意实数,方程总有两个不相等的实数根;
(2)设方程的两个实数根分别为,,当时,求的值.
如图,抛物线与轴相交于,两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
(1)求此抛物线的解析式;
(2)当点位于轴下方时,求面积的最大值;
(3)设此抛物线在点与点之间部分(含点和点最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.