已知:用2辆A型车和1辆B型车装满货物一次可运货10吨; 用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
计算 (1)﹣14﹣2×(﹣3)2+|﹣4| (2)(﹣)÷ (3)2(2b﹣3a)+3(2a﹣3b) (4)180°﹣56°23′.
如图,抛物线与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式及顶点D的坐标; (2)若点P是抛物线第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为时,四边形PQAC是平行四边形;当点P的坐标为 时,四边形PQAC是等腰梯形. (利用备用图画图,直接写出结果,不写求解过程). (3)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标
已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把弧 CA分为三等份,连接MC并延长交y轴于点D(0,3) (1)求证:△OMD≌△BAO; (2)若直线把⊙M的周长和△OMD面积均分为相等的两部份,求该直线的解析式.
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%. (1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围. (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元? (成本=进价×销售量)
如图,直角三角形ABC中,∠C=90°,∠A=30°,点O在斜边AB上,半径为2的⊙O过点B,且切AC边于点D,交BC边于点E, 求:(1)弧DE的长; (结果保留π) (2)由线段CD,CE及弧DE围成的阴影部分的面积。(结果保留π和根号)