在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得数据如下(单位:kg)1)画出散点图;2)检验相关系数r的显著性水平;3)求月总成本y与月产量x之间的回归直线方程
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数的单调区间及其图象的对称轴方程.
(本小题满分14分)如图,在一个由矩形与正三角形组合而成的平面图形中,现将正三角形沿折成四棱锥,使在平面内的射影恰好在边上. (1)求证:平面⊥平面; (2)求直线与平面所成角的正弦值.
第20题
已知是实数,是抛物线的焦点,直线.(1)若,且在直线上,求抛物线的方程;(2)当时,设直线与抛物线交于两点,过分别作抛物线的准线的垂线,垂足为,连交轴于点,连结交轴于点.①证明:⊥;②若与交于点,记△、四边形、△的面积分别为,问是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.