在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N .(1)写出点C的坐标;(2)求证:MD = MN;(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明.
某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图. 请你根据图表提供的信息,解答下列问题: (1)频数分布表中a=,b=; (2)补全频数分布直方图; (3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是.
已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF. (1)求证:△BEC≌△DFC; (2)如果BC+DF=9,CF=3,求正方形ABCD的面积.
解方程:
已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B. (1)如图1,当ABCD为等腰梯形时,求AB的长; (2)当点E与点A重合时(如图2),求AB的长; (3)当△BCE为直角三角形时,求AB的长.
直线y=kx-6过点A(1,-4),与x轴交于点B,与y轴交于点D,以点A为顶点的抛物线经过点B,且交y轴于点C. (1)求抛物线的表达式; (2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标; (3)如果直线l与直线y=kx-6关于直线BC对称,求直线l的表达式.