甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x个零件,请按要求解决下列问题:⑴根据题意,填写下表:
⑵甲、乙两车间平均每小时各生产多少个零件?
如图1,△ABC中,BC=25,BC边上的高为20,将AB,AC分别n等分,连接两边对应的等分点,以这些连接线为一边做矩形,使这些矩形的边B1C1,B2C2,B3C3……的对应边分别为 B2C2,B3C3,B4C4……(1)若n=5,如图2,求B3C3为一边的矩形的面积;(2)若n=5,求所有矩形的面积和;(3)当分为n等分时,你能用含有n的表达式表示所有矩形的面积和吗?
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的80%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润为2000元,那么小明每月的成本需要多少元?(成本=进价×销售量)
如图所示,已知抛物线的解析式为(1)求抛物线的顶点坐标;(2)将抛物线每次向右平移2个单位,平移n次,依次得到抛物线(n为正整数)①求抛物线与x轴的交点A1、A2的坐标;②试确定抛物线的解析式.(直接写出答案,不需要解题过程)
如图AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连结AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.
如图,A(-1,0),B(2,-3)两点都在一次函数与二次函数的图象上.(1)求和,的值;2-1-c-n-j-y(2)请直接写出当>时,自变量的取值范围.