甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x个零件,请按要求解决下列问题:⑴根据题意,填写下表:
⑵甲、乙两车间平均每小时各生产多少个零件?
如图正方形的面积为4,点为坐标原点,点在函数(,)的图象上,点是函数的图象上异于的任意一点,过点分别作轴,轴的垂线,垂足分别为.(1)设矩形的面积为,判断与点的位置是否有关(不必说理由).(2)从矩形的面积中减去其与正方形重合的面积,剩余面积记为,写出与的函数关系,并标明的取值范围.
如图,已知为坐标原点,点的坐标为,的半径为1,过作直线平行于轴,点在上运动.(1)当点运动到圆上时,求线段的长.(2)当点的坐标为时,试判断直线与的位置关系,并说明理由.
学校要从甲、乙、丙三名中长跑运动员中选出一名奥运火炬传递手.先对三人一学期的1000米测试成绩作了统计分析如表一;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表二;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图三,一票计2分.(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.(2)如果对奥运知识、综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.
阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组.如:由(2)得,代入(1)消元得到关于的方程:,将代入得:,方程组的解为请你用代入消元法解方程组:
将图(1)中的矩形沿对角线剪开,再把沿着方向平移,得到图(2)中的.其中是与的交点,是与的交点.在图(2)中除与全等外,还有几对全等三角形(不得添加辅助线和字母)?请一一指出,并选择其中一对证明.