(14分)在直角坐标系中椭圆:的左、右焦点分别为、.其中也是抛物线:的焦点,点为与在第一象限的交点,且.(1)求的方程;(2)平面上的点满足,直线∥,且与交于、两点,若,求直线的方程.
已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”. (Ⅰ) 若是“一阶比增函数”,求实数的取值范围; (Ⅱ) 若是“一阶比增函数”,求证:,; (Ⅲ)若是“一阶比增函数”,且有零点,求证:有解.
已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
设函数. (I)当时,求的单调区间; (II)若对恒成立,求实数的取值范围.
已知命题:“,都有不等式成立”是真命题。 (I)求实数的取值集合; (II)设不等式的解集为,若是的充分不必要条件,求实数的取值范围.
函数f(x)=x2+x-. (I)若定义域为[0,3],求f(x)的值域; (II)若f(x)的值域为[-,],且定义域为[a,b],求b-a的最大值.