(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).
△ABC中,角A、B、C对边分别是a、b、c,满足. (Ⅰ)求角A的大小; (Ⅱ)求的最大值,并求取得最大值时角B、C的大小.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,求椭圆的方程; (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由.
已知函数 (1)求的单调减区间; (2)若方程有三个不同的实根,求的取值范围; (3)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
如图, 在直三棱柱中,,,点是的中点, (1)求证:; (2)求证:; (3)求直线与平面所成角的正切值.
已知关于的方程C:. (1)若方程表示圆,求的取值范围; (2)若圆与直线:相交于两点,且=,求的值.