设计算法求:+++…+的值,要求画出程序框图.
某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素. 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
A E C ⏜ 是半径为 a 的半圆, A C 为直径,点 E 为 A C ⏜ 的中点,点 B 和点 C 为线段 A D 的三等分点,平面 A E C 外一点 F 满足 F C ⊥ 平面 B E D , F B = 5 a .
(1)证明: E B ⊥ F D ; (2)求点 B 到平面 F E D 的距离.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关? (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
设函数 f x = 3 sin ω x + π 6 , ω > 0 , x ∈ - ∞ , + ∞ ,且以 π 2 为最小正周期. (1)求 f 0 ; (2)求 f x 的解析式; (3)已知 f α 4 + π 12 = 9 5 ,求 sin α 的值.
已知函数 f ( x ) = x , g ( x ) = a ln x , a ∈ R . (Ⅰ)若曲线 y = f ( x ) 与曲线 y = g ( x ) 相交,且在交点处有相同的切线,求 a 的值及该切线的方程; (Ⅱ)设函数 k ( x ) = f ( x ) - g ( x ) ,当 k ( x ) 存在最小值时,求其最小值 φ ( a ) 的解析式; (Ⅲ)对(Ⅱ)中的 φ ( a ) ,证明:当 a ∈ ( 0 , + ∞ ) 时, φ ( a ) ≤ 1 .