请从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.
(本小题满分12分) 设函数 (1)当时,求的最大值; (2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值.
(本小题满分12分) 已知椭圆的一个焦点为F1(-1,0),对应的准线方程为,且离心率e满足:成等差数列。 (1)求椭圆C方程; (2)如图,抛物线的一段与椭圆C的一段围成封闭图形,点N(1,0)在x轴上,又A、B两点分别在抛物线及椭圆上,且AB//x轴,求△NAB的周长的取值范围。
(本小题满分12分) 如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2. (1)求证:AE//平面DCF; (2)当AB的长为何值时,二面角A-EF-C的大小为.
(本小题满分10分) 等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=2x+r(r为常数)的图象上. (1)求r的值; (2)记bn=(n∈N*),求数列{bn}的前n项和Tn.
(本小题满分14分) 如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与x轴始终围成一个等腰三角形。