已知实数满足,且有求证:
(本题满分15分)已知数列{}中,(n≥2,),数列,满足()(1)求证数列{}是等差数列;(2)求数列{}中的最大项与最小项,并说明理由(3)记…,求.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率; (2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望
已知函数,若方程有且只有两个相异根0和2,且(1)求函数的解析式。(2)已知各项不为1的数列{an}满足,求数列通项an。(3)如果数列{bn}满足,求证:当时,恒有成立。
已知,函数,在是一个单调函数。 (1)试问在的条件下,在能否是单调递减函数?说明理由。 (2)若在上是单调递增函数,求实数a的取值范围。 (3)设且,比较与的大小。
已知函数(其中)的图象与x轴在原点右侧的第一个交点为N(6,0),又(1)求这个函数解析式(2)设关于x的方程在[0,8]内有两个不同根,求的值及k的取值范围。