(本小题满分14分)在平面直角坐标系中,已知椭圆过点,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在以为直角顶点且内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.
已知: 、、是同一平面内的三个向量,其中 =(1,2)⑴若||,且,求的坐标;⑵若||=且垂直,求与的夹角θ。
设函数 (1)当时,求函数的最大值;(2)令()其图象上任意一点处切线的斜率≤ 恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
如图,某市准备在一个湖泊的一侧修建一条直路,另一侧修建一条观光大道,它的前一段是以为顶点,轴为对称轴,开口向右的抛物线的一部分,后一段是函数,时的图象,图象的最高点为,,垂足为.(1)求函数的解析式;(2)若在湖泊内修建如图所示的矩形水上乐园,问:点落在曲线上何处时,水上乐园的面积最大?
设函数,其中. (1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.
已知函数,其中(1)写出的奇偶性与单调性(不要求证明);(2)若函数的定义域为,求满足不等式的实数的取值集合;(3)当时,的值恒为负,求的取值范围.