在直线3x-y-1=0上求一点M, 使它到点A(4,1)和B(0,4)的距离之差最大, 并求此最大值.
四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=, (1)求证:PD⊥平面ABCD; (2)求证,直线PB与AC垂直;
已知数列{}是公差不为0的等差数列,a1=2且a2, a3, a4+1成等比数列. (1)求数列{}的通项公式; (2)设,求数列{}的前n项和
若函数f(x)=ax2+2x-ln x在x=1处取得极值. (1)求a的值; (2)求函数f(x)的单调区间及极值.
从4名男生和5名女生中任选5人参加数学课外小组,求在下列条件下各有多少种不同的选法? (1)选2名男生和3名女生,且女生甲必须入选; (2)至多选4名女生,且男生甲和女生乙不同时入选.
已知a,b,c,d∈(0,+∞),求证ac+bd≤.