某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球袋中摸出1个球,再从装有编号为1、2、3的三个红球袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.
如图,点A, D, B,E在同一条直线上,且AD=BE, ∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题请给出一个适当的条件使它成为真命题,并加以证明.
解不等式组,并求它的整数解.
平面内两条直线∥,它们之间的距离等于.一块正方形纸板的边长也等 于.现将这块硬纸板如图所示放在两条平行线上.如图1,将点C放置在直线上, 且于O, 使得直线与、相交于E、F,证明:的周长等于;请你继续完成下面的探索:如图2,若绕点C转动正方形硬纸板,使得直线与、相交于E、F, 试问的周长等于还成立吗?并证明你的结论;如图3,将正方形硬纸片任意放置,使得直线与、相交于E、F,直线与、CD相交于G,H,设AEF的周长为,CGH的周长为,试问,和之间存在着什么关系?试证明你的结论.
经过原点和(4,0)的两条抛物线,,顶点分别为,且都在第1象限,连结交轴于,且.分别求出抛物线和的解析式;点C是抛物线的轴上方的一动点,作轴于,交抛物线于D,试判断和的数量关系,并说明理由;直线,交抛物线于M,交抛物线于N,是否存在以点为顶点的四边形是平行四边形,若存在,求出的值;若不存在,说明理由..
已知直线于O,现将矩形ABCD和矩形EFGH,如图1放置,直线BE分别交直线于.当矩形ABCD≌矩形EFGH时,(如图1) BM与 NE的数量关系是;当矩形ABCD与矩形EFGH不全等,但面积相等时,把两矩形如图2,3那样放置,问在这两种放置的情形中,(1)的结论都还成立吗?如果你认为都成立,请你利用图3给予证明,若认为BM与 NE的有不同的数量关系,先分别写出其数量关系式,再证明.