设双曲线C:-y2=1的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q.(1)若直线m与x轴正半轴的交点为T,且·=1,求点T的坐标;(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;(3)过点F(1,0)作直线l与(2)中的轨迹E交于不同的两点A、B,设=λ·,若λ∈[-2,-1],求|+|(T为(1)中的点)的取值范围.
如图:线段AB、CD所在的直线是异面直线,E、F、G、H分别是线段AC、CB、BD、DA的中点,P、Q两点分别是AB和CD上的任意点,求证:PQ被平面EFGH平分、
如图,已知异面直线AB、CD都平行于平面,且AB、CD在两侧,若AC、BD与分别交于M、N两点、求证:。
、异面直线,为空间任一点,过作直线与、均相交,这样的直线可以作多少条。
三个平面两两相交不共线,求证三条直线交于一点或两两平行。
如图,异面直线、,,,为中点,,,,,,,求证:为中点。