一个盒子中有2个红球和1个白球,每次取一个.(1)若每次取出后放回,连续取两次,记A=“取出两球都是红球”,B=“第一次取出红球,第二次取出白球”,求概率P(A),P(B);(2)若每次取出后不放回,连续取2次,记C=“取出的两球都是红球”,D=“取出的两个球中恰有1个是红球”,求概率P(C),P(D).
已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且. (1)求动点的轨迹的方程; (2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。 (1)求曲线E的方程; (2)若过定点F(0,2)的直线交曲线E于G、H不同的两点,求此直线斜率的取值范围。 。
是⊙:上的任意一点,过作垂直轴于,动点满足。 (1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使为的中点,若存在,求出直线的方程,若不存在,请说明理由。
已知双曲线与椭圆有相同焦点,且经过点. (1)求双曲线的方程; (2) 过点作斜率为1的直线交双曲线于两点,求.
直线经过两条直线:和的交点,且分这两条直线与轴围成的三角形面积为两部分,求直线的一般式方程。