如图,在三棱锥中,平面,,为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.(1)证明:平面;(2)求三棱锥的体积;
(本小题满分为16分)已知函数.(1)若,求函数的极值,并指出极大值还是极小值;(2)若,求函数在上的最值;(3)若,求证:在区间上,函数的图象在的图象下方.
(本小题满分为14分) 如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.(1)请在木块的上表面作出过的锯线,并说明理由;(2)若该四棱柱的底面为菱形,四边形是矩形时,试证明:平面平面.
(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.
(本小题满分10分) 选修4—5:不等式选讲已知关于的不等式,其解集为.(Ⅰ)求的值;(Ⅱ)若,均为正实数,且满足,求的最小值.
(本小题满分10分) 选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为:,曲线的参数方程为:(Ⅰ)写出直线的直角坐标方程;(Ⅱ)求曲线上的点到直线的距离的最大值.