已知:球的半径为R,要在球内作一内接圆柱,问这个圆柱的底面半径和高为何值时,它的侧面积最大?
某中学举行了一次“上海世博会知识竞赛”,从全校参加竞赛的学生的试卷中,随机抽取了一个样本,考察竞赛的成绩分布(得分均为整数,满分100分),将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:(Ⅰ)样本容量是多少?(Ⅱ)成绩落在那个范围内的人数最多?并求该小组的频数、频率;(Ⅲ)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
阅读流程图,若记y=f(x).(Ⅰ) 写出y=f(x)的解析式,并求函数的值域;(Ⅱ)若x0满足f(x0)<0 且f(f(x0))=1,求x0.
如图是单位圆上的点,且分别在第一,二象限.是圆与轴正半轴的交点,为正三角形. 若点的坐标为. 记.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分10分)已知极坐标系下曲线的方程为,直线经过点,倾斜角.(Ⅰ)求直线在相应直角坐标系下的参数方程; (Ⅱ)设与曲线相交于两点,求点到两点的距离之积.
(本小题满分12分)已知函数在和时都取得极值.(Ⅰ)求和的值;(Ⅱ)若存在实数,使不等式成立,求实数的取值范围;