某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x年后,该地区的廉价住房为y万平方米,求y=f(x)的表达式,并求此函数的定义域.(2)作出函数y=f(x)的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?
(本小题满分7分)已知向量,且满足。 (1)求向量的坐标; (2)求向量与的夹角。
已知.
(数列首项,前项和与之间满足. ⑴求证:数列是等差数列; ⑵求数列的通项公式; ⑶设存在正数,使对都成立,求的最大值.
在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD, 且PA=2AB (1)求证:平面PAC⊥平面PBD; (2)求二面角B—PC—D的余弦值.
(.如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD, ∠ABC=60°,E,F分别是BC,PC的中点. (1)证明:AE⊥PD; (2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为, 求二面角E—AF—C的余弦值.