如图,在平面直角坐标系中,若、的长是关于的一元二次方程的两个根,且(1)求的值.(2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似?(3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
(年江苏常州9分)在平面直角坐标系中,二次函数的图像与轴交于点A,B(点B在点A的左侧),与轴交于点C,过动点H(0, )作平行于轴的直线,直线与二次函数的图像相交于点D,E.(1)写出点A,点B的坐标;(2)若,以DE为直径作⊙Q,当⊙Q与轴相切时,求的值; (3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,请说明理由.
(2014年湖北襄阳12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒. (1)填空:点A坐标为 ;抛物线的解析式为 . (2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形? (3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
(年广西来宾12分)如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(2014年广西河池12分)如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE. (1)抛物线的解析式是 ; (2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过作F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值; (3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.
(年广东省9分)如图,在△ABC中,AB=AC,AD⊥AB点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值,若不存在,请说明理由.