在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.(1)试问小球通过第二层位置的概率是多少?(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层位置处的概率各是多少?
如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
先化简,再求值:,其中,.
(1)计算:;(2)解方程:.
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).⑴△EFG的边长是___________ (用含有x的代数式表示),当x=2时,点G的位置在_______;⑵若△EFG与梯形ABCD重叠部分面积是y,求①当0<x≤2时,y与x之间的函数关系式;②当2<x≤6时,y与x之间的函数关系式;⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线L与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线的解析式及直线AC的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.