某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t,可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t,问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)
已知圆心 (Ⅰ)写出圆C的标准方程; (Ⅱ)过点作圆C的切线,求切线的方程及切线的长.
(本小题满分14分)如图,在五面体ABC—DEF中,四边形BCFE 是矩形,DE 平面BCFE. 求证:(1)BC 平面ABED; (2)CF // AD.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点. (1)求证:GH∥平面CDE; (2)求证:面ADEF⊥面ABCD.
在平面直角坐标系中,已知点A(-2,1),直线. (1)若直线过点A,且与直线平行,求直线的方程; (2)若直线过点A,且与直线垂直,求直线的方程.
(本小题满分14分)已知圆:,直线. (1)若直线l与圆交于不同的两点,当时,求的值; (2)若,是直线l上的动点,过作圆的两条切线、,切点为、,探究:直线是否过定点; (3)若、为圆:的两条相互垂直的弦,垂足为,求四边形的面积的最大值.