某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t,可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t,问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)
(本小题满分13分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图1,在四边形中,点C(1,3).(1)求OC所在直线的斜率; (2)过点C做CD⊥AB于点D,求CD所在直线的方程.
(本小题满分14分) 已知抛物线和直线没有公共点(其中、为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为、,且直线恒过点. (1)求抛物线的方程; (2)已知点为原点,连结交抛物线于、两点, 证明:.
(本小题满分13分) 已知函数. (1)当且,时,试用含的式子表示,并讨论的单调区间; (2)若有零点,,且对函数定义域内一切满足的实数有. ①求的表达式; ②当时,求函数的图象与函数的图象的交点坐标.
(本小题满分12分) 已知数列的前n项和为 (n∈N*),且.数列满足,,,n=2,3,…. (Ⅰ)求数列 的通项公式; (Ⅱ)求数列 的通项公式; (Ⅲ)证明:对于 ,.