已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线的参数方程为 (为参数),圆的极坐标方程为.若直线与圆相交于、且,求实数的值.
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.(1)若|AB|=8,求抛物线的方程;(2)求的最大值
设定圆,动圆过点且与圆相切,记动圆圆心的轨迹为.(1)求轨迹的方程;(2)已知,过定点的动直线交轨迹于、两点,的外心为.若直线的斜率为,直线的斜率为,求证:为定值.
已知椭圆的一个顶点为B(0,4),离心率,直线交椭圆于M,N两点。(1)若直线的方程为,求弦MN的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线方程的一般式。
如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。(1)求的值及椭圆的标准方程;(2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
已知椭圆的焦距为2,且过点.(1)求椭圆C的方程;(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.①当直线的倾斜角为时,求的长;②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.