如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点H,点H在E、C两点之间,连结AE、AF.(1)求证:△ABE≌△FDA.(2)当AE⊥AF时,求∠EBH的度数.
如图1,OP是∠MON的平分线,请你利用刻度尺在该图形上画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上. 请你参考这个作全等三角形的方法,解答下列问题: (1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数; (2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由; (3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
如图,点是等边内一点,.将绕点按顺时针方向旋转得,连接. (1)求证:是等边三角形; (2)当时,试判断的形状,并说明理由; (3)探究:当为多少度时,是等腰三角形?
如图,在四边形ABCD中,∠ABC=∠ADC= 90º,M、N分别是AC、BD的中点, 求证:(1)MD=MB; (2)MN平分∠DMB.
如图,已知AB=AC,AD=AE.求证:BD=CE.
如图,C为线段AB的中点,CD平分∠ACE,CE平分∠BCD,且CD=CE,求证:△ACD≌△BCE.