地的距离为18千米.一次行动中,王警官带队从O地出发,沿OC方向行进.王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话.通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73.】
如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点. (1)求证:△ABE≌△CDF; (2)若∠B=60°,AB=4,求线段AE的长.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)BD与CD有什么数量关系?并说明理由. (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
如图所示,O点为△ABC的边AC上一动点,过点O作MN∥BC,∠ACB的平分线交MN于E,∠ACB的外角平分线交MN于F. (1)判断OE与OF的大小关系,并说明理由. (2)当点O运动到何处时,四边形AECF是矩形?并说明理由.
如图所示,在□ABCD中,对角线AC、BD交于点O,直线EF经过点O交BC于F、交AD于E,且AF⊥BC.求证:四边形AFCE是矩形.
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.