地的距离为18千米.一次行动中,王警官带队从O地出发,沿OC方向行进.王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话.通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73.】
(1)观察图,并填写下表(图中每个小方格的面积为1单位面积):
(2)三个正方形A,B,C的面积之间有什么关系? (3)三个正方形围成的一个直角三角形的三边长之间存在什么关系?
[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. [定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述). [尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理. [知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下: ∵BC=a+b,AD=________, 又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________, ∴.
如图所示,牧童在A处放牛,其家在B处,A,B处到河岸的距离分别为AC=400m,BD=200m,且CD=800m,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?
如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长; (2)求△ADB的面积.
如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个正方形(边长为c).请你将它们拼成一个能验证勾股定理的图形. (1)画出拼成的这个图形的示意图; (2)用(1)中画出的图形验证勾股定理.