.函数,数列满足 (I)求证:数列是等差数列; (II)令,若对一切成立,求最小正整数.
如图,四棱锥中,平面,底面为矩形,为的中点.(1)求证:;(2)在线段上是否存在一点,使得平面?若存在,求出的长;若不存在,请说明理由.
(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于;(2)已知,试用分析法证明:.
已知为复数,且(为虚数单位),求.
第17届亚运会将于2014年9月18日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.(1)根据调查数据制作2×2列联表;(2)根据列联表的独立性检验,能否认为性别与喜爱运动有关?
(参考公式:,其中.)
已知.(1)求的单调区间;(2)求函数在上的最值.