已知函数.(Ⅰ)求函数的最小正周期及最值; (Ⅱ)令,判断函数的奇偶性,并说明理由.
已知函数.(1)若是偶函数,在定义域上恒成立,求实数的取值范围;(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.
如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是半径的中点,求线段的大小;(2)设,求△面积的最大值及此时的值.
在棱长为的正方体中,分别为的中点.(1)求直线与平面所 成 角的大小;(2)求二面角的大小.
动圆过定点,且与直线相切,其中.设圆心的轨迹的程为(1)求;(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,,计算;(3)曲线上的两个定点、,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;
已知数列{an}中,a2=1,前n项和为Sn,且.(1)求a1,a3;(2)求证:数列{an}为等差数列,并写出其通项公式;(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.