设函数,其中.(Ⅰ)若,求在上的最小值;(Ⅱ)如果在定义域内既有极大值又有极小值,求实数的取值范围;(Ⅲ)是否存在最小的正整数,使得当时,不等式恒成立.
已知函数(且).(1) 试就实数的不同取值,写出该函数的单调递增区间;(2) 已知当时,函数在上单调递减,在上单调递增,求的值并写出函数的解析式; (3) (理)记(2)中的函数的图像为曲线,试问是否存在经过原点的直线,使得为曲线的对称轴?若存在,求出的方程;若不存在,请说明理由. (文) 记(2)中的函数的图像为曲线,试问曲线是否为中心对称图形?若是,请求出对称中心的坐标并加以证明;若不是,请说明理由.
定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.(1)求证:方程f(x)=0有且只有一个实根;(2)若a>b>c>1,且a、b、c成等差数列,求证:;(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:
已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;(1)求a的值;(2)求证:x=1是该函数的一条对称轴;(3)是否存在实数b,使函数的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由.
函数的定义域为R,并满足以下条件:①对任意,有;②对任意、,有;③ 则(1)求的值; (2)求证:在R上是单调增函数; (3)若,求证:
已知函数在处取得的极小值是.(1)求的单调递增区间;(2)若时,有恒成立,求实数的取值范围.