已知定义在R上的函数和数列满足下列条件:,,其中a为常数,k为非零常数.(Ⅰ)令,证明数列是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)当时,求.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人? (2)在上述抽取的6人中选2人,求恰有一名女生的概率.
设函数 (1)求函数的值域和函数的单调递增区间; (2)当,且时,求的值.
已知关于的函数,其导函数为.记函数在区间上的最大值为. (1) 如果函数在处有极值,试确定的值; (2) 若,证明对任意的,都有; (3) 若对任意的恒成立,试求的最大值.
椭圆的离心率为,其左焦点到点的距离为. (1) 求椭圆的标准方程; (2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
已知数列中,,前项和. (1) 求数列的通项公式; (2) 设数列的前项和为,是否存在实数,使得对一切正整数都 成立?若存在,求出的最小值;若不存在,请说明理由.