(满分12分)某次体能测试中,规定每名运动员一开始就要参加且最多参加四次测试.一旦测试通过,就不再参加余下的测试,否则一直参加完四次测试为止.已知运动员甲的每次通过率为(假定每次通过率相同).(1) 求运动员甲最多参加两次测试的概率;(2) 求运动员甲参加测试的次数的分布列及数学期望(精确到0.1).
已知数列{an }的前n项和为Sn,满足an ¹ 0,,. (1)求证:; (2)设,求数列{bn}的前n项和Tn.
某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。 (1)写出L关于的函数解析式; (2)当年产量为多少时,该厂生产A产品所获的利润最大?
已知:,当时,; 当时,。 (1)求的解析式 (2)解x的不等式
在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。 (1)若,,求△ABC的面积; (2)若成等比数列,试判断△ABC的形状。
设数列{an}是一个公差为的等差数列,已知它的前10项和为,且a1,a2,a4 成等比数列. (1)求数列{an}的通项公式; (2)若,求数列的前项和Tn .