先化简,后求值:
某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.
如图,在边长为1个单位长度的小正方形组成的方格中,点A、B、C都是格点.(1)将△ABC绕点O按逆时针方向旋转180°得到△A1B1C1,请画出△A1B1C1;(2)依次连结BC1、B1C,猜想四边形BC1B1C是什么特殊四边形?并说明理由.
用配方法解一元二次方程:.
如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到y轴距离相等时,求点E坐标.(3)当的面积为时,求的值.
某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?