①数轴上的点并不都表示有理数,如图以数轴的单位长度为边作正方形,以数轴上的原点O为圆心,正方形的对角线的长为半径作弧与数轴交于一点A,则点A表示的数为 这种说明问题的方式体现的数学思想方法叫做( )
②请你模仿上面的例子在下面的数轴上找出表示的点:(本小题5分 )
在一个口袋中有四个完全相同的小球,把它们分别标号为1,2, 3,4.小明和小强采取了不同的摸取方法,分别是: 小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号; 小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号. 用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果; 分别求出小明和小强两次摸球的标号之和等于5的概率.
解不等式组:.
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!) (2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。
丹东市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式; (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠ABC. (1)求证:AD是半圆O的切线; (2)若BC=2,AC=2,求AD的长.