(本题10分)假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如下的统计资料:
由资料知y与x呈线性相关关系.估计当使用年限为10年时,维修费用是多少万元?
(本小题满分10分)选修4—1:几何证明选讲 如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.
(本小题满分12分)已知函数,其中常数. (1)当时,求函数的极大值; (2)试讨论在区间上的单调性; (3)当时,曲线上总存在相异两点,,使得曲线在点处的切线互相平行,求的取值范围.
已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且,点在该椭圆上. (1)求椭圆的方程; (2)过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切圆的方程.
已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (1)证明:DN//平面PMB; (2)证明:平面PMB平面PAD; (3)求点A到平面PMB的距离.
(本小题满分12分)为了了解甘肃省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“甘肃省有哪几个著名的旅游景点?”统计结果如下图表.
(1)分别求出a,b,x,y的值; (2)从第2,3,4组回答正确的人中用分层抽样的方法 抽取6人,求第2,3,4组每组各抽取多少人? (3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.