(本题10分)假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如下的统计资料:
由资料知y与x呈线性相关关系.估计当使用年限为10年时,维修费用是多少万元?
((本小题满分10分) 选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点. (1)写出直线的极坐标方程与曲线C的普通方程; (2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.
(.选修4—1:几何证明选讲 如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转到O D. (1)求线段PD的长; (2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
(.(本题满分12分) 已知二次函数和“伪二次函数”(、、), (I)证明:只要,无论取何值,函数在定义域内不可能总为增函数; (II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为, (i)求证:; (ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.
((本题满分12分) 已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点. (Ⅰ)求的取值范围; (Ⅱ)求△面积的最大值.
(本小题满分12分) 如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (1)求证:BD⊥FG; (2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.