已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,求出的斜率范围,若不存在,说明理由。
为了竖一块广告牌,要制造三角型支架,三角形支架如图所示,要求,长度大于米,且比长米,为了广告牌的稳固,要求的长度越短越好,求最短为多少?
已知中,,,. (1)求的面积关于的表达式 (2)求的面积的最大值.
如图,已知抛物线,焦点为,顶点为,点在抛物线上移动,是的中点,是的中点,求点的轨迹方程.
已知:,:.若“”是“”的充分不必要条件,求实数的取值范围.
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦 (Ⅰ)求椭圆的方程; (Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的 横坐标为,求斜率的值;②若点,求证:为定值.