如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?
如图一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数值大于反比例函数值时,x的取值范围;(3)根据图象写出使反比例函数值大于一次函数值时,x的取值范围;(4)求△AOB的面积.
已知关于x的一次函数y1=kx+1和反比例函数的图象都经过点(2,m).(1)求一次函数的表达式;(2)求反比例函数的图象与一次函数的图象的两交点及坐标原点所构成的三角形的面积;(3)观察图象,当x在什么范围内时,y1>y2.
在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数 (x>0)的图象上时,设△ABC在第一象限部分的面积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.
如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边BC交于点F.(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?
已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则= .