如图,在直角坐标系中,点A的坐标为(,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)请直接写出点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)如果点P是(2)中的抛物线上的动点,且在x轴的上方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水的最高标准为10吨,超过标准的部分加价收费,不超过10吨,每吨按2.9元收费,超过10吨的部分按每吨4元收费, (1)某用户3月份用水x吨,请用含x的代数式表示应交水费 (2)求当x=25时的水费.
如图,点C是线段AB上一点,AC<AB,M,N分别是AB和CB的中点,AC=8,NB=5,求线段MN的长.
(1)化简:﹣3(a3b+2b2)+(3a3b﹣14b2) (2)化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.
为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少? (2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用; (3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
在课间活动中,小英、小丽和小敏在操场上画出A,B两个区域,一起玩投包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示. (1)沙包落在A区域和B区域所得分值分别是多少? (2)求出小敏的四次总分.