(本小题满分10分)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.
(本小题满分12分)已知椭圆C:的离心率为,且过点Q(1,).(1) 求椭圆C的方程; (2) 若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线上,且满足 (O为坐标原点),求实数t的最小值.
(本小题满分12分)某单位为了提高员工素质,举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如图所示的茎叶图(单位:分),分数在175分以上(含175分)者定为“运动健将”,并给予特别奖励,其他人员则给予“运动积极分子”称号.⑴ 若用分层抽样的方法从“运动健将”和“运动积极分子”中抽取10人,然后再从这10人中选4人,求至少有1人是“运动健将”的概率;⑵ 若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并求的数学期望.
(本小题满分12分)在三棱锥中,,,平面平面,为的中点.(1) 证明:;(2) 求所成角的大小.
(本小题满分12分)中,角的对边分别为,且(1) 求角; (2) 设函数将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得图象向右平移个单位,得到函数的图象,求函数的对称中心及单调递增区间.
(本小题满分14分)已知点列满足:,其中,又已知,.(I)若,求的表达式;(II)已知点B,记,且成立,试求a的取值范围;(III)设(2)中的数列的前n项和为,试求: 。