分解因式: (1) (2)
先化简,再求值,其中
已知A(1,)是反比例函数图象上的一点,直线AC经过点A及坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的解析式。
(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=.(1)求点M的坐标(用含的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;(3)当为何值时,四边形BNDM的面积最小.
(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?
(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.