已知函数,(I)若,求在处的切线方程;(II)求在区间上的最小值.
在锐角中,,,分别为内角,,所对的边,且满足.(Ⅰ)求角的大小;(Ⅱ)若,且,,求的值.
已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(Ⅱ)若集合是集合的一个元基底,证明:;(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.
(本小题满分14分)已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
(本小题满分13分)已知函数,其中是常数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
(本小题满分14分)在四棱锥中,底面是直角梯形,∥,,,平面平面.(Ⅰ)求证:平面; (Ⅱ)求平面和平面所成二面角(小于)的大小;(Ⅲ)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.